Imperial College London logo
  • Tuition Fee:
  • Local: $ 11.6k / 2015-16
  • Foreign: $ 32.9k / 2015-16
  • Languages of instruction:
  • English
  • StudyQA ranking:
  • 795pts.
  • Duration:
  • 1 year

    Photos of university

    The MRes programme at the Institute of Systems and Synthetic Biology is organised in association with the EPSRC National Centre for Synthetic Biology and Innovation (CSynBI) and the Centre for Integrative Systems Biology and Bioinformatics (CISBIO).

    The course provides graduate students from life sciences, engineering and physical sciences with a platform to overcome traditional barriers to work collaboratively on the ‘big problems’ and applications in synthetic and systems biology. Students gain intensive hands-on experience in a combination of experimental biology and modelling in order to understand, predict and redesign biological pathways. There is a link with the BIOS Centre at King’s College to facilitate the integration of this research with emerging ethical, legal and societal issues.

    The taught elements of the course include introductory modules that cover essentials for both life and physical scientists, as well as modules on experimental systems biology, theoretical systems biology, synthetic biology, and advanced technologies. In addition to conventional lectures, the course requires active engagement by students through practicals, bench work, case studies, proposal writing, journal clubs, and an eight-month interdisciplinary research project. Only these activities will be marked; there will not be any formal written exams.

    For further enrichment of the programme, close connections to industry and medicine will be provided through research projects from corresponding members of the Institute, as well as additional courses and workshops.

    The programme is only offered as a full-time, one-year course and leads to the MRes degree. Students begin their lecture programme with compulsory core courses and practicals (modules 1–5) in the first term (October–December).

    In January students choose a topic for the eight-month long multidisciplinary, theoretical or experimental research project, supervised by at least two supervisors with different expertise. One supervisor may also come from industry.

    During the month of January students write a research proposal (6 pages) on their chosen research project, evaluated by a student mock panel for early feedback prior submission to supervisors. During terms 2 (January-March) and 3 (April-June), a mini-conference will be offered.

    MODULES

    1a. Introductory courses – Essentials for Life Scientists

    This short lecture course introduces the basics of modelling and theoretical analysis, tailored towards students from the life sciences with limited theoretical background. In particular, lectures will cover differential equations and stochastic simulations.

    Computer practical - the programming package Matlab will be introduced. Emphasis will be put on learning by examples. Students will learn how to read data files, analyse data, fit models to data, plot graphs, print to output files, and how to implement simple dynamical models. The latter will focus on ordinary differential equations.

    1b. Introductory courses – Essentials for Physical Scientists

    This short lecture/tutorial course will provide an introduction to life sciences, tailored towards students from the physical sciences. Lectures will discuss aspects of molecular biology and information flow within a biological context (DNA, RNA, proteins, transcription and translation). An overview of some experimental techniques (cloning, PCR) will be provided.

    In addition to the basic introduction to biology some insight will be provided into up-to-date DNA assembly methods which have applications in synthetic biology and will be of interest to students with life science backgrounds.

    Hands-on experience in basic experimental techniques will be provided. The practical will explore new techniques in DNA assembly.

    Module 2 – Experimental Systems Biology

    Lectures will cover signalling and gene regulatory pathways and programmes in bacteria, mammalian cells and plants. Further topics of the lectures will include structural and functional genomics, and experimental techniques. Molecular medicine and genetic aspects of health and disease will be also be mentioned.

    Module 3 – Theoretical Systems Biology

    This lecture course will cover various modelling techniques. Specifically, lectures will cover dynamical systems, networks, deterministic differential equations, stochastic simulations, control theory, biophysics and cell mechanics, as well as statistical approaches, such as Bayesian inference.

    Module 4 – Synthetic Biology

    Topics of module range from biological building blocks and their characterization as, e.g. input/output relations, filters, amplifiers, robustness, as well as control theory, metabolic flux analysis, and genetic engineering. Additionally, this module will address social, ethical and policy issues, such as how is science linked to society, biology in the political context, social challenges, governance and regulation.

    Module 5 – Advanced Technology

    This short lecture course will cover imaging and high-throughput technologies. Imaging techniques include various forms of fluorescence microscopy, and high-throughput techniques include RNAi screens, microarrays, and microfluidic devices.

     


    UK requirements for international applications

    Universities in the United Kingdom use a centralized system of undergraduate application: University and College Admissions Service (UCAS). It is used by both domestic and international students. Students have to register on the UCAS website before applying to the university. They will find all the necessary information about the application process on this website. Some graduate courses also require registration on this website, but in most cases students have to apply directly to the university. Some universities also accept undergraduate application through Common App (the information about it could be found on universities' websites).

    Both undergraduate and graduate students may receive three types of responses from the university. The first one, “unconditional offer” means that you already reached all requirements and may be admitted to the university. The second one, “conditional offer” makes your admission possible if you fulfill some criteria – for example, have good grades on final exams. The third one, “unsuccessful application” means that you, unfortunately, could not be admitted to the university of you choice.

    All universities require personal statement, which should include the reasons to study in the UK and the information about personal and professional goals of the student and a transcript, which includes grades received in high school or in the previous university.


    program_requirements

    The minimum qualification for admission is normally at least an upper second class Honours degree in a physical, engineering, mathematical, or life/biomedical sciences-based subject from an UK academic institution, or an equivalent overseas qualification. A-level mathematics will generally be required for entry.

    If your first degree is from a country other than the UK, you may find the guidelines within our Country Index helpful. Please note that these guidelines indicate the College minimum. Our requirement is usually higher.

    A-level mathematics (or equivalent) will generally be required for entry.

    Similar programs:
    University of Edinburgh logo
    • Tuition Fee:
    • Domestic students: $ 11.7k / Year
    • International students: $ 25.9k / Year
      University of Edinburgh logo
      • Tuition Fee:
      • Domestic students: $ 8k / Year
      • International students: $ 25.9k / Year
        University of Leeds logo
        • Tuition Fee:
        • Domestic students: $ 10.6k / Year
        • International students: $ 22.2k / Year
          University of Northampton logo
          • Tuition Fee:
          • International students: $ 16.7k / Year
            Bangor University logo
            • Tuition Fee:
            • Domestic students: $ 6.93k / Year
            • International students: $ 16.4k / Year
              University of Northampton logo
              • Tuition Fee:
              • International students: $ 16.7k / Year
                University of Leeds logo
                • Tuition Fee:
                • Domestic students: $ 10.6k / Year
                • International students: $ 22.2k / Year
                  Imperial College London logo
                  • Tuition Fee:
                  • Domestic students: $ 11.6k / 2015-16
                  • International students: $ 32.9k / 2015-16
                  • Ranking:
                  • 1560 StudyQA
                  • Duration:
                  • 1 year
                    University of Newcastle-upon-Tyne logo
                    • Tuition Fee:
                    • Domestic students: $ 7.16k / Year
                    • International students: $ 19.2k / Year
                      University of Leeds logo
                      • Tuition Fee:
                      • Domestic students: $ 10.6k / Year
                      • International students: $ 22.2k / Year
                        See all of the 81 similar programs