Photos of university

Description

Our degree programmes have been set up in close collaboration with the East of England Energy Group (EEEGR) to answer the regional and national demand for a skilled energy engineering workforce.

The Skills for Energy sub-group of EEEGR provides energy engineering students with industry-driven case studies, site visits, on-site lectures, breakfast meetings and sponsored equipment.

Our students have the opportunity for affiliate membership of the Energy Institute, providing free student membership and an e-magazine. UEA has been working closely with the Energy Institute to ensure that all energy engineering degrees will satisfy their requirements for professional accreditation.

Year 1 is aimed at introducing the fundamental principles of all engineering disciplines using energy engineering as a focus. The Energy Engineering Revolution module aims to provide an up to date assessment of the energy industry, using visiting speakers, mini-projects and case studies to address topical issues such as renewable heat incentives, feed-in tariffs and maintenance in the offshore environment. The Engineering Principles module builds knowledge in fluid flow, electricity, structural design and materials. Engineering Practice introduces the design theme and uses it as a vehicle to explore professional practice and ethical codes of conduct. A range of communication techniques including sketching and drawing skills as well as team working are all taught in an energy context. The two mathematics modules consolidate pre-university knowledge and push it a bit further. The engineering mathematics component complements the theoretical work with estimation challenges and energy data analysis using a range of software.

Year 2 builds on the foundations and goes into more depth about design codes of practice and uses renewable energy examples to illustrate advanced principles. For example a basic understanding of wind turbine towers includes considerations of drag-induced overturning forces and foundation stability as well as the aerodynamics of flow past the turbines. Pumps and turbines linked to pipe flow and networks develops a thorough understanding of micro-hydro schemes and various methods of grid storage push the electricity theme further. The important mathematical theme continues to more advanced material including learning programming skills.

Year 3 (Year in Industry) HR departments throughout engineering industry emphasise the value of practical experience gained whilst still at university. So as a minimum every student should take advantage of the opportunities to work in their chosen sector over the vacations. However the weather impacts on many sectors of engineering such that employers really value the opportunity to employ an intern for a whole year. Additional benefits accrue from what is in effect a prolonged interview and the relatively small component of the year’s work given over to initial training makes it cost-effective. Irrespective of the UCAS code that you are admitted to you can decide during your second year whether to spend a year in industry as transferring between programmes at that stage is easy. Whilst we can never guarantee a placement the support of industry through EEEGR means that you are sure to find a company to suit you. Work-based learning in such placements is well-structured to ensure that your training involves work at an appropriate level. You develop a learning plan, complete inception and interim reports and then finally report on a project element of your work delivering this both in writing and as an oral presentation to faculty and industrial supervisors.

Year 4 includes the important element of your individual project. Your supervisor may make suggestions for suitable topics but essentially this is your chance to become an expert in the area of energy engineering that fascinates you and in which you are likely to work. Industry is keen to see this in-depth study as many energy engineering degrees can be a bit superficial in their coverage. At UEA we aim for both breadth and depth.

Engineering Design

Engineers design things. This is a highly creative process that builds upon a thorough understanding of fundamental principles of fluid flow, material properties, structural behaviour, dynamics of systems and mathematics. But rather than save up all the fun bits till the underpinning theory is complete, you will tackle engineering design challenges from the start of your degree and gradually build up your confidence until by third and fourth year you are capable of completing a detailed design to industry standards.

Health and Safety Risk Management

Engineering is becoming ever safer. Many companies now operate a zero tolerance approach to health and safety using sophisticated risk assessment and management techniques. Identifying risks can also lead to financial opportunities. The culture of safe working begins in first year with laboratory exercises and site visits, and then permeates all the design work. The chemical engineering hazard study approach to design is adopted throughout.

Professional Ethics and Commercial Awareness

It is obviously important to understand the technical aspects of your discipline, but this is only half the story. Professional life raises all sorts of ethical dilemmas whether it is the care that must be taken in checking calculations to the consideration of risks to the public and when or whether to alert them. Often the dilemmas are compounded by the underlying need to make a business profitable. There is a growing interest amongst practising engineers in these important aspects. You will discuss these issues with practising engineers who meet them during their working lives. By the time you graduate you should have confidence that you have a foundation understanding of how industry works which will allow you to get the most out of your initial training.

Energy Technologies

It is quite likely that you were attracted to energy engineering by the technology involved, whether it was the majestic sweep of a wind turbine, or the sheer size of the support vehicles and boats installing them. Or perhaps you are wedded to the decentralisation of energy supply and the idea of making maximum use of all waste to recover its energy potential appeals to you. Whatever your technical interests there will be something in our degrees for you. Renewable energy technologies from marine to solar are complemented by a thorough understanding of modern conventional technologies such as combined cycle gas turbines or carbon capture to prolong the life of coal. Nuclear power is used as a vehicle to introduce the very important subject of risk assessment as well as for its important contribution to the energy mix.

Environmental Awareness

Environmental Impact Statements are a key feature of all major energy engineering schemes. Industry is concerned that engineers attempt to bolt such important concepts on to the end of a design rather than embedding them from the start at every key decision stage. At UEA we are uniquely placed to offer this theme as an integral part of our degrees because of our long-established expertise in environmental sciences. Climate change, greenhouse gas emissions and other crucial concepts become second nature to our students. It is possible to continue this theme through all years of your degree or to develop your mathematical ability still further in third and fourth year.

About the image above: PPE (Personal Protective Equipment) is essential but seen as a last resort by risk managers if exposure to the hazard is unavoidable. The staff and students on this site visit to Kings Lynn Power Station are wearing special flame retardant overalls which are compulsory for all visitors who tour the electrical parts of the site.

Detailed Course Facts

Tuition fee Not specified Start date 2016 Languages Take an IELTS test
  • English
Delivery mode On Campus Educational variant Full-time Intensity Flexible

Course Content

Year 1

Energy Engineering Revolution (Semester 1) – 20 Credits

This 20-credit module immerses students within the dynamic changes occurring in the Energy Engineering industry, as we attempt to replace longstanding non-renewable resources such as coal and gas with renewable energy from wind and tidal conversion. Spread over the entire first year, a series of site visits introduce students to the commercial realities of the industry whilst professional guest speakers familiarise students with specific energy engineering case studies. Each case study aims to develop specific technical skills and give students practice in report writing, oral presentation and team work which will be vital as the course progresses.

Engineering Principles and Laws - (Semesters 1 and 2) – 20 Credits

This 20-credit module consolidates several distinct topics – all of which will be essential during the later stages of the course. During the first semester, students investigate how to harness the properties of modern materials within an engineering context through lab work whilst developing an appreciation of structural behaviour through examination of solid and lattice structures. In addition, students are introduced to the principles of electricity and electronics through hands-on lab work and circuit building. Semester 2 focuses on thermodynamics, integrating the study of heat transfer, fluid flow and hydraulics into coursework and a final exam worth 70% of the module.

Engineering Practice - (Semesters 1 and 2) – 20 Credits

Engineering Practice prepares students for the inherent financial and ethical considerations of working in the engineering industry as well as kick-starting the creative design theme of the course. Semester 1 begins by recreating the team-based nature of modern energy companies through a series of induction activities aimed at helping students with the transition to university study. The group then studies the historical developments which govern design principles in today’s low-carbon world, including business sustainability and the ethical responsibility of resource depletion. These concepts then feed directly into students’ design work as they learn to produce professional technical drawings and sketches alongside 3D models using CAD software. Students are assessed on their progress through coursework and learning is supplemented by industrial site visits in both semesters.

Engineering Mathematics and Mechanics - (Semesters 1 and 2) – 20 Credits

This module utilises the mathematical concepts from the Maths for Scientists module in an engineering context, before complementing the material with practical mechanics to solve real-world problems. Over the first semester students are introduced to the vocational necessity of estimation in the absence of accurate data through a team-based competition , as well as the practical geometry and numerical methods which can be used when analytical techniques fail. This is supplemented by practical exercises in graphical presentation and data analysis which will contribute to the coursework element of the module. Teaching then concentrates on mechanics in the second semester, encompassing Newton’s laws of motion, particle dynamics and conservation laws before a final exam.

Maths for Scientists A - (Semesters 1 and 2) – 20 Credits

This module furthers A Level Mathematics to provide a broad overview on the application of mathematics within a general scientific context. It covers differentiation, integration, vectors, partial differentiation, and introductory statistical methods. In addition to the theoretical background, there is an emphasis on applied examples and the use of numerical computing software including Matlab. You should have a good previous knowledge of calculus. This unit is the first in a series of three maths units for students across the Faculty of Science aiming to provide a solid undergraduate mathematical training. The following units are Mathematics for Scientists B and C.

Year 2

Circuits and Systems – (Semester 1) – 20 Credits

This single-semester module draws on your practical experience of building circuits during Engineering Principles and Laws from the first year, introducing techniques for analysis of analogue electronic circuits and systems through a series of lectures. Students are encouraged to work together in a workshop environment to develop their analytical skills and review industrial problems through team-work. Practical exercises and lab projects contribute to the 40% coursework element, whilst supporting the theory by allowing students to build their own electronic devices.

Energy Engineering Principles – (Semester 1) – 20 Credits

In the second year we aim to refine the engineering principles from your earlier studies towards a specialised energy context, applying your knowledge of material properties, thermodynamics and lattice structures to industrial examples. These examples include the analysis of fluid flow in tidal energy generation, the structural mechanics and stability of wind turbine towers alongside the electronics of solar power. The complete range of examples allows students to explore the many facets of energy engineering which their education has opened up for them before choosing an area to specialise in during further years of their course.

Renewable Energy – (Semester 2) – 20 Credits

With the number of skilled energy engineers decreasing but concerns over climate change rising, there is more demand than ever for graduates with a detailed knowledge of renewable energy resources. This module expands your understanding of wind, tidal and hydroelectric energy whilst acquainting you with alternative techniques including heat pumps, deep geothermal sources and anaerobic digestion. Students will consider how these various technologies can realistically contribute to the energy mix, as well as the developing possibilities of converting waste to energy.

Maths for Scientists B – (Semester 1) – 20 Credits

This is the second of three maths modules which you will study over the course of your engineering degree. By analysing several mathematical topics, we aim to increase your understanding of larger scientific concepts – for example a focus on vector calculus should help you in the study of vector fields in subjects such as fluid dynamics for wave energy devices and electromagnetism for electric generators. Other key topics include adapting time series and spectral analysis to interpret scientific data, alongside applying fluid dynamics within biological, oceanographic and chemical engineering contexts. As with other Maths for Scientists modules, the use of numerical computing software ‘Matlab’ will be encouraged.

Maths for Scientists C – (Semester 2) – 20 Credits

The final core maths module on the BEng and MEng programme continues to apply advanced mathematics concepts to scientific examples. It explains how matrix algebra and numerical methods can be applied to multi-variable industrial problems, in addition to the applications of solid mechanics to geophysics, glaciology and material science. Further study of second order partial differential equations will break down the rules which govern diffusive, wavelike and advection systems. There is a continuing emphasis on numerical computing software ‘Matlab’, with an extended programming component.

Year 3

Please see “Year in Industry” tab above

Year 4

Electricity Generation and Distribution – (Semester 2) – 20 Credits

In the final semester of third year this module will build on your established understanding of electricity by studying the technical aspects of the electrical industry. Analysing transformer designs will help consolidate your knowledge of generation before developing an advanced understanding of the constraints of cabling for offshore wind turbines. You will evaluate the efficiency of the national grid by comparing the practical design aspects to the costs involved. A detailed consideration of the current shortfall in meeting demand for electricity will lead to the study of novel methods of distribution, including pumped-storage schemes and super-capacitors.

Nuclear and Solar Energy – (Semesters 1 and 2) – 20 Credits

As we turn to new energy supplies to replace our polluting traditional resources, it is essential to fully consider the responsibilities of introducing new technologies into the mainstream energy mix. This module addresses the technical aspects of nuclear power and solar energy, whilst letting students apply their knowledge from the Engineering Practice module to make ethical decisions incorporating health and safety risk assessments. Successful design of nuclear installations requires a detailed quantitative risk analysis within a regulatory framework that imposes high tolerances. In contrast, the rapid installation of solar panels at a domestic scale requires education to ensure smaller companies remain in line with legislation. Although these new energies are considered cleaner it is essential to consider the developing environmental impact and planning law, as well as changing the societal perception of nuclear and solar energies.

Fossil Fuels – (Semester 1) – 20 Credits

In contrast to ‘Nuclear and Solar Energy’, this module explores the scientific formation of established fossil fuels in addition to the processes used to accumulate and convert them into energy. Students are introduced to the economic and political history which has governed the mining of oil, natural gas and coal before discussing contemporary environmental concerns regarding the use of fossil fuels. Finally students will study the geological impact of the fuels as well as the implications of a future fuel scarcity.

Individual Energy Project – (Semesters 1 and 2) – 40 Credits

This module allows students to display their full talents and understanding of energy engineering through an extended piece of individual work. This significant piece of work is worth 40 credits of the overall degree and runs over both semesters of the third year. The student has freedom to specialise in any aspect of the course, but the project will comprise research, design, implementation and practical elements. The subject of the project is negotiated between the student and a supervisor at the start of the module. The supervisor will then continue to support the student in project management, team-working, report-writing and the applied design process throughout the assignment. Projects are often based on a topic suggested by our industrial partners. Examples of possible projects include

  • Designing and testing a small wave energy capture device
  • Investigating the impact of a tidal barrage in a particular location
  • Computer modeling of novel small-scale wind turbines
  • Critical analysis of the prospects for carbon capture and storage
  • Evaluating techniques for large-scale electricity storage
  • Prediction of the long-term impact of electric cars on the National Grid
  • Effectively communicating the potential impact of waste to energy plants.
  • Designing a district scale CHP plant

UK requirements for international applications

Universities in the United Kingdom use a centralized system of undergraduate application: University and College Admissions Service (UCAS). It is used by both domestic and international students. Students have to register on the UCAS website before applying to the university. They will find all the necessary information about the application process on this website. Some graduate courses also require registration on this website, but in most cases students have to apply directly to the university. Some universities also accept undergraduate application through Common App (the information about it could be found on universities' websites).

Both undergraduate and graduate students may receive three types of responses from the university. The first one, “unconditional offer” means that you already reached all requirements and may be admitted to the university. The second one, “conditional offer” makes your admission possible if you fulfill some criteria – for example, have good grades on final exams. The third one, “unsuccessful application” means that you, unfortunately, could not be admitted to the university of you choice.

All universities require personal statement, which should include the reasons to study in the UK and the information about personal and professional goals of the student and a transcript, which includes grades received in high school or in the previous university.


program_requirements

English Language Requirements

IELTS band : 6 TOEFL iBT® test : 78

To study at this university, you have to speak English. We advice you to

take an IELTS test. More About IELTS

Requirements

  • A Level: AAA including Mathematics and one other science
  • International Baccalaureate: 34 points including 6 Higher Level subjects at grade 6 including Maths and one other science
  • Scottish Highers: AAAAA including Advanced Level Mathematics and one other science
  • Scottish Advanced Highers: AAA including Mathematics and one other science
  • Irish Leaving Certificate: AAAAAA including Mathematics and one other science
  • Access Course: See Below
  • European Baccalaureate: 85% including 85% in Mathematics and one other science

Students for whom English is a Foreign language

We welcome applications from students whose first language is not English. We require evidence of proficiency in English (including writing, speaking, listening and reading). Recognised English Language qualifications include:

  • IELTS: 6.0 overall (minimum 5.5 in any component)
  • TOEFL: Internet-based score of 78 overall (minimum 20 in Speaking component, 17 in Writing and Listening components and 18 in Reading components)
  • PTE: 55 overall (minimum 51 in any component)

If you do not meet the University's entry requirements, our INTO Language Learning Centre offers a range of university preparation courses to help you develop the high level of academic and English skills necessary for successful undergraduate study.

If you do not meet the academic and or English requirements for direct entry, our partner INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests and your qualifications, you can take a variety of routes to this degree:
International Foundation in Mathematics and Actuarial Sciences

International Foundation in the Sciences

Interviews

It is not necessary for most applicants to come to campus for an interview, alothough our Visit Days and Energy Engineering Summer School provide a vital opportunity for applicants to find out more about our undergraduate programmes. Our visit days allow potential applicants to view our facilities and meet course teachers as well as trying out hands-on experiments in our laboratories. Parents are given the opportunity to speak directly with the course organisers and professional industry speakers will be on hand to give a broader background of employability.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Special Entry Requirements

A level in Mathematics (or equivalent) and one other Science subject from the following: Applied Science, Biology, Business Studies, Chemistry, Computing, Design and Technology: Product Design (3D Design), Design Technology: Systems and Control Technology, Economics, Electronics, Engineering, Environmental Management, Environmental Studies, Further Mathematics, Geography, ICT, Marine Science, Mechanics, Physics, Statistics.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.
Pass Access to HE Diploma with Distinction in 45 credits at level 3, including 12 level 3 Mathematics credits and 12 level 3 credits in one other science.

GCSE Offer

Students are required to have GCSE Mathematics at grade B and GCSE English Language at grade C.

Work Experience

No work experience is required.

Related Scholarships*

  • Academic Excellence Scholarship

    "The Academic Excellence Scholarship can provide up to a 50 % reduction in tuition per semester. These scholarships will be renewed if the student maintains superior academic performance during each semester of their 3-year Bachelor programme. The scholarship will be directly applied to the student’s tuition fees."

  • Access Bursary

    Bursary for UK students all subjects where the variable tuition fee rate is payable.

  • Alumni Bursary

    Alumni Bursary for UK Undergraduate students

* The scholarships shown on this page are suggestions first and foremost. They could be offered by other organisations than University of East Anglia.

Similar programs:
University of Southampton logo
  • Tuition Fee:
  • Domestic students: $ 8.15k / Year
  • International students: $ 23k / Year
    Imperial College London logo
    • Tuition Fee:
    • Domestic students: $ 13.2k / 2015-16
    • International students: $ 35.1k / 2015-16
    • Ranking:
    • 2179 StudyQA
    • Duration:
    • 1 year
      University of Leeds logo
      • Tuition Fee:
      • Domestic students: $ 13.3k / Year
      • International students: $ 22.3k / Year
        University of Strathclyde logo
        • Tuition Fee:
        • Domestic students: $ 18.1k / Year
        • International students: $ 23.6k / Year
          University of Southampton logo
          • Tuition Fee:
          • Domestic students: $ 8.15k / Year
          • International students: $ 23k / Year
            University of Leeds logo
            • Tuition Fee:
            • Domestic students: $ 13.3k / Year
            • International students: $ 22.3k / Year
              University of Leeds logo
              • Tuition Fee:
              • Domestic students: $ 13.3k / Year
              • International students: $ 22.3k / Year
                The Robert Gordon University logo
                • Tuition Fee:
                • Domestic students: $ 6.51k / Year
                • International students: $ 14.2k / Year
                  See all of the 16 similar programs